【廣告】
小型豆渣烘干機溫控方案規(guī)劃
PID 操控從發(fā)生并發(fā)展至今已有百年歷史,雖然現(xiàn)在各種先進控制算法層出不窮,但PID 操控扔未被篩選,源于其結構簡單、參數(shù)易于整定,并且具有較好的魯棒性,在操控技術領域依舊占據(jù)主導地位,廣泛的應用于工業(yè)生產(chǎn)中。
小型豆渣烘干機
PID 操控的中心是數(shù)學模型及其參數(shù)的設定,本文結合溫控箱的實踐生產(chǎn)過程,存在升溫文天然降溫的問題,規(guī)劃操控算法時,將其當作一個線性系統(tǒng),選用一個慣性環(huán)節(jié)結合一個純滯后環(huán)節(jié)作為溫控箱的數(shù)學模型。
小型豆渣烘干機使用單片機規(guī)劃了紫菜烘干機的溫度操控系統(tǒng),該系統(tǒng)運行
可靠、成本低、維護便利、操作簡單等特色。壓縮機帶有過電流、過高壓力和過低壓力維護,整機帶有電源缺相、錯相、欠電壓及過電壓維護,同時體系具有掉電數(shù)據(jù)不丟掉功用。突破了傳統(tǒng)加工易污染、效率低的問題,改進了一般溫控加熱滯后性、時變性的問題,完成了紫菜烘干的全過程監(jiān)控,具有操控精度高、自適應強的特色。后期研討可將其擴展為其它水產(chǎn)品以及農(nóng)產(chǎn)品的烘干操控系統(tǒng),契合市場需求,完成產(chǎn)業(yè)化發(fā)展。
小型豆渣烘干機工作時,主風機從大氣中吸入的環(huán)境空氣經(jīng)管路進入熱風爐中,經(jīng)過與熱風爐燃燒室中燃燒的燃煤所產(chǎn)生的煙氣進行熱交換而被加熱,成為熱風。隨后,熱風經(jīng)熱風箱和管路被送到烘干地道窯中。依據(jù)所得到的實驗參數(shù)組合進行多要素實驗,取各影響要素水平值為自變量,玫瑰花籽單位時刻失水率為點評指標。烘干地道窯是一個由保溫材料砌成的、橫截面為矩形的長通道,在其底面鋪設有軌跡,在軌跡上有多輛可以沿軌跡移動的物料小車。在小型豆渣烘干機作業(yè)期間,各物料小車上分層放置著待烘干的果蔬物料。熱風的進風方法根據(jù)烘干機的類型分兩種,一種是熱風從烘干地道窯的一端進入,經(jīng)過物料小車上的物料層,隨后從地道窯的另一端排出。另一種進風方法是熱風從烘干地道窯的兩端(即進料口和排料口)一起進風,在地道窯的中部排潮口排出。在上述過程中,由相對濕度較低的熱風帶走了果蔬物料的水分而使其烘干。
盛載著物料的小車隊在軌跡上沿著從進料口到出料口的方向做間歇移動。當位于醉前端的小車上的物料水分含量降到預訂數(shù)值后,該物料小車被人工拉出烘干地道窯,并送入冷卻風室,以便對物料進行冷卻,冷卻后的物料可到達醉終要求的水分含量。9kW,本方案設計運用KFD-20II(A)空氣源熱風熱泵烘干機1臺,適用環(huán)境溫度-5~40℃。小車隊的行進由頂推機推進,頂推機在小車隊的后端進行頂推操作,每次使小車隊向前移動一個小車長度的距離;隨后在頂推機與小車行列之間加入一輛放置了待烘干物料的小車。上述過程不斷地重復,載貨小車不斷行進,使烘干物料醉終到達符合要求的含水率。
小型豆渣烘干機智能控制系統(tǒng)設計
由于太陽輻射不穩(wěn)定,太陽能干燥設備烘干溫度隨太陽輻射值改變而改變,或者需要手動改變烘房內部溫度以適應當時干燥溫度。枸杞烘干過程中對溫度有很高的要求,溫度過低會下降干燥速率,延長干燥時刻,小型豆渣烘干機溫度過高又會導致內部糖分液化隨水分搬遷滲出枸杞外表,使其外表發(fā)生糖分滲出而影響干燥質量。將要素水平編碼表代入Design-Expert8.0軟件中,軟件將自動生成實驗參數(shù)組合。
小型豆渣烘干機在實驗中發(fā)現(xiàn),枸杞烘干應至少分為3 個溫度階段:在干燥初期選用40 ~ 45℃,目的是在避免枸杞表面發(fā)生滲糖現(xiàn)象的條件下盡可能快地干燥枸杞,階段約耗時22h; 在干燥中期選用50 ~ 55℃以進一步加速剩下水分搬遷,此階段約耗時22h;在干燥后期選用60 ~ 70℃,此階段枸杞水分含量已經(jīng)很小,進步溫度才能夠促進其水分搬遷,且此時高溫烘干基本不會使枸杞發(fā)生糖分滲出現(xiàn)象,此階段直至干燥完畢。以此實驗數(shù)據(jù)為依據(jù),在實驗室開展多種枸杞烘干工藝參數(shù)實驗,試驗得出醉優(yōu)的烘干工藝,枸杞烘干過程分為5 個階段,每個階段所選用的溫度、相對濕度和烘干時刻各不相同,把各階段所需的溫度、相對濕度及時刻別離輸入溫濕度控制器,設備運行后控制器對烘干房內溫度和濕度別離進行監(jiān)控。從傳質角度剖析,首要因為跟著干燥過程的進行,干燥層厚度增加,傳質阻力增大。