【廣告】
光電探測器工作原理
光電探測器的基本工作機理包括三個過程:(1)光生載流子在光照下產(chǎn)生;(2)載流子擴散或漂移形成電流;(3)光電流在放大電路中放大并轉換為電壓信號。當探測器表面有光照射時,如果材料禁帶寬度小于入射光光子的能量即Eg<hv,則價帶電子可以躍遷到導帶形成光電流。紅外感應開關是一種比較常見的光電探測器,它通過感應身體發(fā)出的紅外光,來實現(xiàn)對電路的開關。
當光在半導體中傳輸時,光波的能量隨著傳播會逐漸衰減,其原因是光子在半導體中產(chǎn)生了吸收。半導體對光子的吸收的吸收為本征吸收,本征吸收分為直接躍遷和間接躍遷。通過測試半導體的本征吸收光譜除了可以得到半導體的禁帶寬度等信息外,還可以用來分辨直接帶隙半導體和間接帶隙半導體。本征吸收導致材料的吸收系數(shù)通常比較高,由于半導體的能帶結構所以半導體具有連續(xù)的吸收譜。從吸收譜可以看出,當本征吸收開始時,半導體的吸收譜有一明顯的吸收邊。但是對于硅材料,由于其是間接帶隙材料,與三五族材料相比躍遷幾率較低,因而只有非常小的吸收系數(shù),同時導致在相同能量的光子照射下在硅材料中的光的吸收深度更大。直接帶隙材料的吸收邊比間接帶隙材料陡峭很多,如圖 畫出了幾種常用半導體材料(如 GaAs、InP、InAs、Si、Ge、GaP 等材料)的入射光波長和光吸收系數(shù)、滲透深度的關系。1、光子探測器光子探測器的工作原理是基于光電效應,入射的光子和材料中的電子發(fā)生相互作用,若產(chǎn)生的光電子逸出材料表面,則稱為外光電效應。
光電探測器的概述
光電子件:光電管與光電倍增管是典型的光電子發(fā)射型(外光電效應)探測器件。其主要特點是,穩(wěn)定性好,響應速度快和噪聲小,是一種電流放大器件。尤其是光電倍增管具有很高的電流增益,特別適于探測微弱光信號;特別提醒:檢針機不能應用于食品行業(yè),因為檢針機主要靠物理磁場和電磁場磁力檢測,(檢針機的探測頭里面是磁鐵),檢針機的靈敏度會隨著磁鐵的磁性減弱而降低,所以這款設備使用壽命較短,再加上檢針機只能檢測鐵金屬,市場上面臨淘汰的局面。但它結構復雜,工作電壓高,體積較大。光電倍增管一般用于測弱輻射而且響應速度要求較高的場合,如人造的激光測距儀、光雷達等。
CdS和硒化鎘CdSe光敏電阻是可見光波段用得的兩種光敏電阻;硫化鉛PbS光敏電阻是工作于大氣個紅外透過窗口的主要光敏電阻,室溫工作的PbS光敏電阻響應波長范圍1.0~3.5微米,峰值響應波長2.4微米左右;銻化銦InSb光敏電阻主要用于探測大氣第二個紅外透過窗口,其響應波長3~5μm;在動態(tài)特性(即頻率響應與時間響應)方面,以光電倍增管和光電二極管(尤其是PIN管與雪崩管)為好。碲鎘器件的光譜響應在8~14微米,其峰值波長為10.6微米,與CO2激光器的激光波長相匹配,用于探測大氣第三個窗口(8~14微米)。
光電探測器
光電探測器是一種利用光電效應將輻射能轉換成電信號的器件,是光電系統(tǒng)的重要組成部分。光電探測器的發(fā)展歷史由來已久,早在一百八十多年前,人們就已經(jīng)發(fā)明了熱電偶。由于光電探測器件在和人民生活中有重要的應用,其發(fā)展非常迅速。光電探測器利用被照射材料由于輻射的關系電導率發(fā)生改變的物理特點,用途比較廣泛,主要應用在軍事及國名經(jīng)濟的各個領域上。77K或更低溫度下工作,探測度可達1010厘米·瓦-1·赫以上。
光電探測器的選擇要點
光電探測器必須和輻射信號源及光學系統(tǒng)在光譜特性上相匹配。如果測量波長是紫外波段,則選用光電倍增管或專門的紫外光電半導體器件;如果信號是可見光,則可選用光電倍增管、光敏電阻和Si光電器件;如果是紅外信號,則選用光敏電阻,近紅外選用Si光電器件或光電倍增管?,F(xiàn)將光電探測器件的應用選擇要點歸納如下:光電探測器必須和輻射信號源及光學系統(tǒng)在光譜特性上相匹配。
康冠世紀以誠信為首 ,服務至上為宗旨。公司生產(chǎn)、銷售光電探測器,公司擁有強大的銷售團隊和經(jīng)營理念。想要了解更多信息,趕快撥打圖片上的熱線電話!