【廣告】
鍵盤及顯示模塊是干菜烘干機溫控體系完成人機交互的重要手段。本體系中顯示器設定操作界面,包括:開機、設定、待機、運轉、報警、完畢等6 個界面;鍵盤用來設定方針溫度、時間、參數,以及操控體系的作業(yè)狀況轉化。顯示器選用迪文屏幕類型DMT80480C070_03W,屏幕明晰,操作便利,反應靈敏,交互及時。設計鍵盤選用非編碼鍵盤,選用中止方式作業(yè)。溫度從60℃增大到80℃時,單位時刻失水率增大顯著,溫度從80℃增大到90℃時,單位時刻失水率較高,且單位時間失水率根本維持在1%/min左右,可以猜測,溫度持續(xù)增大,其單位時刻失水率變化很少,能量消耗將會大幅增加。
溫控體系設計(軟件)
干菜烘干機經過操控器實時檢測烘干箱內的溫度、時間等相關信息,并依據預設的參數對數據進行分析處理,操控分級,監(jiān)控溫度傳感器等部件作業(yè),若發(fā)現異常,操控單元能自我毛病診斷并輸出報警信號。整個控制軟件選用模塊化結構進行編寫設計,遵循模塊內部數據結構緊湊,模塊數據之間關系松散的原則,便于編寫、調試、修正、增刪。谷層厚度小,塔內交織安置排氣和進氣角狀盒,谷粒按“S”形曲線活動,替換收到高溫和低溫氣流的作用,干菜烘干機能夠使用較高的熱風溫度,這種技能已發(fā)展到脈動式排糧機構,變溫干燥工藝,余熱收回,冷卻段可變的水平。
主程序設計
干菜烘干機主程序模塊的首要作業(yè)是上電后,對體系進行初始化,構建體系整體軟件結構。初始化包括對單片機的初始化,A/D 芯片初始化和串口初始化等。初始化完成后進行毛病檢測,包括:檢測鍵盤、液晶屏,檢測芯片以及單片機等芯片的作業(yè),以保證體系的正常運轉。如果存在毛病,則啟動自我診斷功能,判別毛病類型,保存當前運轉狀況,輸出報警信號,排除障礙后,進行復位康復運轉。環(huán)境壓力干菜烘干機環(huán)境壓力是經過影響水的平衡進而影響干燥,在真空干燥環(huán)境下,濕空氣的蒸氣壓下降對恒速階段干燥有推進作用。體系病則等待溫度、時間設定,若參數已經設定好,則判別體系運轉鍵是否按下,若體系開始運轉,將依次調用各個相關模塊,循環(huán)操控直到體系停止運轉。
干菜烘干機
干菜烘干機空氣集熱器數量的斷定。
考慮烘干房的體積、漂亮及成本,集熱器僅裝置在烘房頂部,一塊空氣集熱器的規(guī)格為2 m × 1 m,則1 t 的烘房可裝置9 塊集熱器,共計18 m2。
烘干房的選材與設計
烘干房墻體資料為75 mm 厚的巖棉夾芯板,其中設有寬1 100 mm 的風室,用于放置室內機和循環(huán)風機,頂部裝置高300 ~ 400 mm 的風道,用于加強烘干房內部的循環(huán),以到達干菜烘干機內部風速和溫度均勻。風道和隔板的龍骨框架為20 mm × 20 mm 的方管,板材為彩圖鋼板。棗的大小在2 cm 左右,1個托盤存放2 層,共6. 25 kg。干菜烘干機自循環(huán)系統(tǒng)是烘干段與冷卻段相配套作業(yè)的工藝過程,當烘干機網帶以醉低線速度走完全部行程,物料水分還高于設定指標時,自循環(huán)系統(tǒng)將自動啟動,進入自循環(huán)烘干工藝流程。
干菜烘干機控制體系
本體系機組可以依據烘干工藝或時段別離設置不同工序,每個工序可以別離設置不同溫度、濕度和運行時間。用戶依據烘干的工藝性,設置好機組參數后,即可主動運轉,本控制體系可設定多段工序進行控制。壓縮機帶有過電流、過高壓力和過低壓力維護,整機帶有電源缺相、錯相、欠電壓及過電壓維護,同時體系具有掉電數據不丟掉功用。體系開機后,當烘干房溫度低過設定溫度后,設備( 壓縮機) 發(fā)動,烘干房溫度到達設定溫度后,干菜烘干機( 壓縮機) 中止( 處于待機狀況) 。在烘干加工未完結的過程中關機或出現故障,則將暫停正在加工的工序。若再次開機或故障解除時則將接著未完結的工序繼續(xù)進行。鍵盤用來設定方針溫度、時間、參數,以及操控體系的作業(yè)狀況轉化。當烘干加工完結時,將主動彈出加工完結對話框并主動關閉機組,若要再次加工,則需按下開關機鍵開機即可重復加工。
干菜烘干機逆流式谷物干燥技能, 該技能使熱風與谷物的活動方向相反, 故醉熱的空氣總是先與醉干的谷物觸摸, 谷物溫度接近熱風溫度, 熱風溫度不能過高,谷物和熱風運動軌道平行, 所有谷物在活動過程中受到相同的干燥處理。這種技能目前發(fā)展到干燥機由一個圓倉和多孔底板組成, 濕谷由倉頂喂入.底板上的掃倉螺旋裝置除自轉外還繞谷倉中心公轉, 將物料自倉底輸送到中心卸出的水平。隨著氣流速度的增大,單位時刻失水率呈先增大后減小的趨勢,且在氣流速度19m/s時獲得醉大值。
干菜烘干機混流式谷物干燥技能, 該技能使干燥設備通用性好, 選用積木式結構, 都設計成標準化塔段;中期階段,即中溫等速干燥,通過中溫加熱,是紫菜外形色彩到達預期要求。 谷層厚度小, 塔內交織安置排氣和進氣角狀盒, 谷粒按“S” 形曲線活動, 替換收到高溫和低溫氣流的作用,干菜烘干機能夠使用較高的熱風溫度, 這種技能已發(fā)展到脈動式排糧機構, 變溫干燥工藝, 余熱收回, 冷卻段可變的水平。這 四種干燥技能簡單可行, 適合小批量作業(yè), 我國基本上都是運用這些干燥技能干燥的。
干菜烘干機圓筒內循環(huán)式谷物干燥技能, 這種技能將干燥機設計為表里圓筒型, 熱空氣分布均勻, 種子受熱共同, 干燥與緩蘇同時進行, 干燥段較短,谷物高速循環(huán)活動, 干燥均勻, 水分蒸發(fā)快, 成本低。該技能現已發(fā)展到機內立式螺旋上方設置清糧部件, 縮式外篩筒和絞盤式傳動裝置, 改動烘干糧食時的緩蘇比, 干菜烘干機選用高風量、低噪聲雙軸流式風機, 折疊式卸糧螺旋, 熱風室內設置導流板的水平。后期研討可將其擴展為其它水產品以及農產品的烘干操控系統(tǒng),契合市場需求,完成產業(yè)化發(fā)展。
干菜烘干機干燥過程中枸杞濕基含水率改變曲線,選用太陽能設備干燥,在干燥24h 今后,枸杞的濕基含水率由78% 下降至15% ,干制品契合出廠要求; 同樣時刻內選用天然暴曬的枸杞濕基含水率只降到70% 左右,這種干燥方法枸杞的濕基含水率下降至15% ,需求120h。對于枸杞的干制,選用太陽能設備干燥所需的時刻( 24h) 較天然暴曬干燥的時刻( 120h) 縮短了80% ,干燥周期顯著縮短。而且由于太陽能干燥設備各干燥階段溫濕度穩(wěn)定在枸杞烘干的醉適溫濕度范圍內,干燥過程根本未呈現枸杞表皮硬化開裂現象。另一種進風方法是熱風從烘干地道窯的兩端(即進料口和排料口)一起進風,在地道窯的中部排潮口排出。
太陽能干燥設備與天然暴曬兩種干燥方法干制的枸杞產品的質量目標測定成果如表3 所示,干菜烘干機干燥的產品黃酮、多糖、氨基酸等養(yǎng)分物質較天然暴曬產品略高,表明干菜烘干機在干燥過程中對產品的養(yǎng)分損失較天然暴曬小,而其壞果率也顯著低于天然暴曬,使用太陽能設備烘干,較高的烘干溫度和較短干燥周期,且相對封閉的干燥環(huán)境隔絕了枸杞與外界環(huán)境的直接觸摸,其菌落總數及大腸菌數量也低于天然暴曬。使用太陽能干燥設備干制的枸杞,其質量較天然暴曬獲得枸杞有很大地提升。9kW,本方案設計運用KFD-20II(A)空氣源熱風熱泵烘干機1臺,適用環(huán)境溫度-5~40℃。