【廣告】
人工智能控制器
建立相匹配的控制模型,同時根據(jù)數(shù)據(jù)實時反饋選擇控制方案,持續(xù)進化,給出優(yōu)控制參數(shù)值。品投運后云端一鍵操作,的簡單背后是強大的算法支持:決策機TMAI可根據(jù)用戶設(shè)置的室溫目標數(shù)據(jù),完成復(fù)雜運算后直接給出控制目標參數(shù),如供水溫度等。決策機TMAI模型可以解決傳統(tǒng)控制模型中室溫數(shù)據(jù)滯后性問題,結(jié)合氣候參數(shù)提前預(yù)測、預(yù)知合理控制目標值,提前干預(yù),平抑室溫波動。
決策機TMAI模型可以處理大量實時性數(shù)據(jù),從數(shù)據(jù)中挖掘系統(tǒng)能耗潛力,給出超出傳統(tǒng)經(jīng)驗的控制模式,可進一步精細調(diào)控,即使到了深寒期,依然實現(xiàn)節(jié)能運行。1、以“室”為終:以室溫為控制目標,穩(wěn)定室溫,平抑波動;快速調(diào)整、穩(wěn)定室溫,回到供熱的初衷:滿足用戶的室溫舒適。即使到了深寒期,依然實現(xiàn)節(jié)能運行。
有很多方法來實現(xiàn)這個過程,但主要的目標是使用系統(tǒng)技術(shù)實現(xiàn)穩(wěn)定的解,并且找到的拓樸結(jié)構(gòu)配置,自學(xué)習(xí)迅速,收斂快速,知識庫由數(shù)據(jù)庫和語言控制規(guī)則庫組成。開發(fā)規(guī)則庫的主要方法是:把的知識和經(jīng)歷用于應(yīng)用和控制目標;建模操作器的控制行動;建模過程;使用自適應(yīng)模糊控制器和人工神經(jīng)網(wǎng)絡(luò)推理機制。推理機是模糊控制器的核心