【廣告】
高溫閥門當逆流狀態(tài)時,閥板與閥座之間的密封靠驅動裝置的力矩使閥板壓向閥座。隨著反向介質壓力的增大,閥板與閥座之間的單位正壓力小于介質壓強時,調節(jié)環(huán)的彈簧在受載后所儲存的變形能補償閥板與閥座密封面的緊壓力起到自動補償作用。
因此本實用新型不像現(xiàn)有的技術那樣,在閥板上安裝軟硬多層密封圈,而是直接安裝在閥體上,在壓板和閥座中間增設調節(jié)環(huán)是十分理想的雙向硬密封方式。它將可取代閘閥、及球形閥。
填料密封中的“迷宮效應”所指的閥桿的表面平整程度無法達到微觀水平,閥桿和填料間的微小間隙這是客觀存在的,無法消除,如果從這方面進行填料密封設計,往往效果不是很理想,而這是造成多空間泄漏或動力泄漏的基本條件。密封介質通過填料和閥桿泄漏機理有很多形式:腐蝕間隙泄漏機制、多孔泄漏機制、動力泄漏機制等。本文對于高溫工況下的閥門填料密封結構的改進設計是基于上述多種泄漏機制,提出切實可行的改進方案。球閥一般有高溫類、低溫類、防腐類、耐磨類等,結構形式有一片式、二片式、三片式、偏心式、上裝式、側裝式、法蘭式、卡套式、對夾式、螺紋式、固定式、浮動式等。
常見閥門填料結構和選擇
常見的閥桿填料密封結構主要有壓板、壓蓋、隔套、填料等組成。為了達到良好的密封效果,一般要求填料具有組織致密,化學穩(wěn)定性好,摩擦系數(shù)低等特點。一般在溫度低于200℃,填料常選用聚四氟乙烯盤根,其具有的高潤滑、不粘性、電絕緣性和良好的抗老化等特點,廣泛用于石油、化工、制藥等領域。由于填料具有一定程度的可塑性,受軸向壓力后產(chǎn)生徑向壓力和微變形,內孔與閥桿緊密貼合,但是這種貼合上下不是均勻的。
在200°到450°溫度工況下,石墨盤根因具有耐高溫、自潤滑、低摩擦系數(shù)等特點,被廣泛選用。石墨盤根根據(jù)用途已研制出各種分類,在實際應用中,填料可根據(jù)實際工況條件選擇合適的石墨盤根類型,例如250℃、低壓工況場合可選擇膨脹石墨盤根,中、高壓可選擇增強型石墨盤根或者兩者組合使用。熔鹽具有廣泛使用溫區(qū)、蒸汽壓低、粘度低、熱穩(wěn)定性好和環(huán)保無污染等良好性能,其作為傳熱和蓄熱工質已被廣泛應用于太陽能光熱發(fā)電和余熱儲存等領域。
蝶閥具有結構簡單、流體阻力小和調節(jié)流量性能好等優(yōu)點,是熔鹽管路調節(jié)流量的優(yōu)選閥門。目前,具有伴熱功能的高溫蝶閥主要采用保溫夾套技術,即在閥體外加上夾套,通過通入蒸汽或導熱油對閥體進行加熱,使蝶閥內部流體溫度保持在其凝固點以上。
不過保溫夾套蝶閥一般適用于伴熱閥門較為集中的區(qū)域,否則伴熱介質輸送管過長造成較大的熱損失。而且,伴熱區(qū)域需要配備一套伴熱系統(tǒng),包括伴熱介質總管、分配站、支管、排出管和收集管等設施,因而伴熱系統(tǒng)較為復雜。此外,該種伴熱系統(tǒng)中伴熱介質的溫度較難控制。由于太陽能光熱電站中熔鹽管路較長,閥門較為分散,且對伴熱溫度控制的要求較高,因此,這限制了保溫夾套蝶閥在熔鹽傳熱蓄熱系統(tǒng)中的應用。其次,擋墻預先擋住了三次風管兩側約30%的通風面積,這樣大大減少了高溫調節(jié)閥閥板寬度方向的尺寸,體積和重量較第二種方案下降了許多,節(jié)約了閥板制作成本,并且降低了起重鏈的受力,閥板調節(jié)靈活。